Add like
Add dislike
Add to saved papers

High-density equation of state for a two-dimensional Lennard-Jones solid.

We present a new equation of state for a two-dimensional Lennard-Jones (2D LJ-EOS) solid at high densities, ρ2D * ≥0.9. The new 2D LJ-EOS is of analytic form, consisting of a zero-temperature contribution and vibrational contributions up to and including the second anharmonic term. A detailed analysis of all contributing terms is performed. Comparisons between the 2D LJ-EOS and Monte Carlo simulation results show that the 2D LJ-EOS is very accurate over a wide range of temperatures in the high-density region. A criterion to find the temperature range over which the 2D LJ-EOS is applicable at a certain density is derived. We also demonstrate an application of the equation of state to predict an effective tangential pressure for the adsorbed contact layer near the wall in a slit-pore system. Tangential pressures predicted by this "2D-route" are found to be in qualitative agreement with those found by the more traditional virial route of Irving and Kirkwood.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app