Add like
Add dislike
Add to saved papers

Systematic Investigation of Two-Dimensional DNA Nanoassemblies for Construction of a Nonspecific Sensor Array.

We have performed a systematic study to analyze the effect of ssDNA length, nucleobase composition, and the type of two-dimensional nanoparticles (2D-nps) on the desorption response of 36 two-dimensional nanoassemblies (2D-NAs) against several proteins. The studies were performed using fluorescently labeled polyA, polyC, and polyT with 23, 18, 12, and 7 nucleotide-long sequences. The results suggest that the ssDNAs with polyC and longer sequences are more resistant to desorption, compared to their counterparts. In addition, 2D-NAs assembled using WS2 were least susceptible to desorption by the proteins tested, whereas nGO 2D-NAs were the most susceptible nanoassemblies. Later, the results of these systematic studies were used to construct a sensor array for discrimination of seven model proteins (BSA, lipase, alkaline phosphatase, acid phosphatase, protease, β-galactosidase, and Cytochrome c). Neither the ssDNAs nor the 2D-nps have any specific interaction with the proteins tested. Only the displacement of the ssDNAs from the 2D-np surface was measured upon the disruption of the existing forces within 2D-NAs. A customized sensor array with five 2D-NAs was developed as a result of a careful screening/filtering process. The sensor array was tested against 200 nM of protein targets, and each protein was discriminated successfully. The results suggest that the systematic studies performed using various ssDNAs and 2D-nps enabled the construction of a sensor array without a bind-and-release sensing mechanism. The studies also demonstrate the significance of systematic investigations in the construction of two-dimensional DNA nanoassemblies for functional studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app