Add like
Add dislike
Add to saved papers

Heterodinuclear Zn(II)-Fe(III) and Homodinuclear M(II)-M(II) [M = Zn and Ni] complexes of a Bicompartmental [N 6 O] ligand as synthetic mimics of the hydrolase family of enzymes.

Heterodinuclear mixed valence [Zn(II)-Fe(III)] and the homodinuclear [Zn(II)-Zn(II)] and [Ni(II)-Ni(II)] complexes of a bicompartmental ligand containing a bridging phenoxy as a O-donor and four pyridyl moieties and two amine moieties as the N-donors exhibit phosphoester hydrolysis activity similar to the hydrolase family of enzymes. While the heterodinuclear [Zn(II)-Fe(III)] (2) complex was obtained by the sequential addition of Fe(NO3 )3 ∙9H2 O and Zn(OAc)2 ∙2H2 O to the ligand 2,6‑bis{[bis(2‑pyridylmethyl)amino]methyl}‑4‑t‑butylphenol (HL) (1) in moderate yield of 37%, the homodinuclear [Zn(II)-Zn(II)] (3) and [Ni(II)-Ni(II)] (4) complexes were obtained by the direct reaction of the ligand (1) with Zn(OAc)2 ∙2H2 O and Ni(OAc)2 ∙2H2 O respectively, in good to moderate yields (43-63%). Based on the spectrophotometric titration and the mass spectrometry studies, a monoaquated and dihydroxo species 2C, 3C and 4C has been identified as the catalytically active species responsible for the phosphodiester hydrolysis of the bis(2,4 - dinitrophenyl)phosphate (2,4 - BDNPP) substrate in the pH range 5.5-10.5. The kinetic studies further revealed that the homodinuclear [Ni(II)-Ni(II)] complexes (4) (kcat  = 1.26 × 10-2  s-1 ) is more active by 39 times than the homodinuclear [Zn(II)-Zn(II)] complexes (3) (kcat  = 3.20 × 10-4  s-1 ) and 27 times more active than the heterodinuclear [Zn(II)-Fe(III)] complex (2) (kcat  = 4.62 × 10-4  s-1 ) in the phosphodiester hydrolysis activity. Significantly enough, the catalyst-substrate adduct species (2E, 2F and 3F) containing a metal bound bis(2,4‑dinitrophenyl)phosphate has been detected by mass spectrometry for the first time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app