Add like
Add dislike
Add to saved papers

3-Nitroacridine derivatives arrest cell cycle at G0/G1 phase and induce apoptosis in human breast cancer cells may act as DNA-target anticancer agents.

Life Sciences 2018 August 2
DNA is considered to be one of the most promising targets for anticancer agents. Acridine analogues have anticancer activity based on DNA binding and topoisomerases inhibition. However, due to the side effects, resistance and low bioavailability, a few have entered into clinical usage and the mechanisms of action are not fully understood. Novel acridine derivatives are needed for effective cancer therapy. A series of novel 3-nitroacridine-based derivatives were synthesized, their DNA binding and anticancer activities were evaluated. The chemical modifications at position 9 of the 3-nitroacridine were crucial for DNA affinity, thus optimizing anticancer activity. UV-Vis and circular dichroism (CD) spectroscopy indicated interaction of compounds with DNA, and the binding modes were intercalation and groove binding. MTT assay and clonogenic assay showed that compounds 1, 2 and 3 had obvious cell growth inhibition effect. They induced cell apoptosis in human breast cancer cells in a dose-dependent manner, and exhibited anticancer effect via DNA damage as well as cell cycle arrest at G0/G1 phage. Using confocal fluorescent microscope, the apoptotic features were observed. The results suggested that compounds 1-3 with high DNA binding affinity and good inhibitory effect of cancer cell proliferation can be developed as prime candidates for further chemical optimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app