Add like
Add dislike
Add to saved papers

High fat diet induced obesity is mitigated in Cyp3a-null female mice.

Recent studies indicate a role for the constitutive androstane receptor (CAR), pregnane X-receptor (PXR), and hepatic xenobiotic detoxifying CYPs in fatty liver disease or obesity. Therefore, we examined whether Cyp3a-null mice show increased obesity and fatty liver disease following 8-weeks of exposure to a 60% high-fat diet (HFD). Surprisingly, HFD-fed Cyp3a-null females fed a HFD gained 50% less weight than wild-type (WT; B6) females fed a HFD. In contrast, Cyp3a-null males gained more weight than WT males, primarily during the first few weeks of HFD-treatment. Cyp3a-null females also recovered faster than WT females from a glucose tolerance test; males showed no difference in glucose tolerance between the groups. Serum concentrations of the anti-obesity hormone, adiponectin are 60% higher and β-hydroxybutyrate levels are nearly 50% lower in Cyp3a-null females than WT females, in agreement with reduced weight gain, faster glucose response, and reduced ketogenesis. In contrast, Cyp3a-null males have higher liver triglyceride concentrations and lipidomic analysis indicates an increase in phosphatidylinositol, phosphatidylserine and sphingomyelin. None of these changes were observed in females. Last, Pxr, Cyp2b, and IL-6 expression increased in Cyp3a-null females following HFD-treatment. Cyp2b and Fatp1 increased, while Pxr, Cpt1a, Srebp1 and Fasn decreased in Cyp3a-null males following a HFD, indicating compensatory biochemical responses in male (and to a lesser extent) female mice fed a HFD. In conclusion, lack of Cyp3a has a positive effect on acclimation to a HFD in females as it improves weight gain, glucose response and ketosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app