Add like
Add dislike
Add to saved papers

In-vitro antitumor activity of new quaternary phosphonium salts, derivatives of 3-hydroxypyridine.

Anti-cancer Drugs 2018 August
This work presents the results of in-vitro biological activity studies of three novel anticancer agents, phosphonium salts based on the 3-hydroxypyridine scaffold, including one derivative of 4-deoxypyridoxine. Proliferation and viability of cells treated with these compounds was assessed by the colony formation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Effects of the compounds on apoptosis and cell cycle were studied by flow cytometry using annexin V-FITC/propidium iodide and propidium iodide staining, respectively. The influence of the compounds on mitochondrial membrane potential and intracellular reactive oxygen species was evaluated using tetramethyl rhodamine ethyl and DCFHA staining. Western blot analysis was used to study the changes in the expression of Bcl-xL, Bax, and caspase-3 apoptotic proteins. The treatment of ovarian adenocarcinoma cells OVCAR-4 with the tested compounds inhibited the growth and induced cell cycle arrest in the G1 phase. 3-Hydroxypyridine derivatives induced apoptosis by hyperexpression of Bax and caspase-3, whereas 4-deoxypyridoxine derivative induced cell death partly by reactive oxygen species generation and caspase-3 hyperexpression. These results indicate that the quaternary phosphonium salts studied represent potential therapeutic agents for the treatment of ovarian cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app