Add like
Add dislike
Add to saved papers

Investigating the dynamics of excitons in monolayer WSe 2 before and after organic super acid treatment.

Nanoscale 2018 May 18
Due to the large photoluminescence quantum yield, high mobility and good stability, organic super acid treated two-dimensional WSe2 has drawn much attention. However, reports about the influence of organic super acid treatment on the dynamic processes of excitons of monolayer WSe2 are still rare. In this work, through the broadband transient absorption spectra obtained using a femtosecond pump-probe system, we determine the dynamics of A' and C excitons in monolayer and bulk WSe2 at room temperature. Besides this, we also observe the relaxation process of the holes between the two spin split states in the valence band maximum in organic super acid treated monolayer WSe2. We find that the organic super acid treatment on monolayer WSe2 does not change the peak positions of the exciton states, while those bleaching peaks' intensities increase significantly due to the enhancement of oscillator strength for exciton states, corresponding to stronger steady-state photoluminescence. This could be attributed to the strain release induced by the defect repairing effect during the organic super acid treatment process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app