Add like
Add dislike
Add to saved papers

Artificial photosynthesis by light absorption, charge separation, and multielectron catalysis.

Our society's current energy demands are largely met by the exploitation of fossil fuels, which are unsustainable and environmentally harmful resources. However, Nature has provided us with a clean and virtually limitless alternative in the form of solar energy. This abundant resource is utilized constantly by photosynthetic organisms, which has in turn motivated decades of research in our quest to create artificial counterparts of comparable scales. In this feature article, we will highlight some of the recent novel approaches in the field of artificial photosynthesis (AP), which we define by a more general term as a process that stores energy overall by generating fuels and chemicals using light. We will particularly emphasize on the potential of a highly modular plug-and-play concept that we hope will persuade the community to explore a more inclusive variety of multielectron redox catalysis to complement the proton reduction and water oxidation half-reactions in traditional solar water splitting systems. We discuss some of the latest developments in the vital functions of light harvesting, charge separation, and multielectron reductive and oxidative catalysis, as well as their optimization, to achieve the ultimate goal of storing sunlight in chemical bonds. Specific attention is dedicated to the use of earth-abundant elements and molecular catalysts that offer greater product selectivity and more intricate control over the reactivity than heterogeneous systems. In this context, we showcase our team's contributions in presenting a unique oxidative carbon-carbon bond cleavage reaction in aliphatic alcohols and biomass model compounds, under ambient atmospheric conditions, facilitated by vanadium photocatalysts. We offer this discovery as a promising alternative to water oxidation in an integrated AP system, which would concurrently generate both solar fuels and valuable solar chemicals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app