Add like
Add dislike
Add to saved papers

The transmembrane domain of the Staphylococcus aureus ESAT-6 component EssB mediates interaction with the integral membrane protein EsaA, facilitating partially regulated secretion in a heterologous host.

The ESAT-6-like secretion system (ESS) of Staphylococcus aureus plays a significant role in persistent infections. EssB is a highly conserved bitopic ESS protein comprising a cytosolic N-terminus, single transmembrane helix and a C-terminus located on the trans-side of the membrane. Six systematic truncations covering various domains of EssB were constructed, followed by bacterial two-hybrid screening of their interaction with EsaA, another conserved integral membrane component of the ESS pathway. Results show that the transmembrane domain of EssB is critical for heterodimerization with EsaA. In vivo crosslinking followed by Western blot analysis revealed high molecular weight species when wild-type EssB and EsaA were crosslinked, but this band was not detected in the absence of the transmembrane domain of EssB. Heterologous overproduction of EssB, EsaA and five other components of the ESS pathway in Escherichia coli BL21(DE3), followed by fractionation experiments led to a remarkable increase in the periplasmic protein content, suggesting the assembly of partially regulated secretion mechanism. These data identify the transmembrane domain of EssB as indispensable for interaction with EsaA, thereby facilitating protein secretion across bacterial membranes in a fashion that requires other components of the ESS pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app