Add like
Add dislike
Add to saved papers

Highly porous layers of silica nanospheres sintered by drying: scaling up of the elastic properties of the beads to the macroscopic mechanical properties.

Soft Matter 2018 May 17
Layers obtained by drying a colloidal dispersion of silica spheres are found to be a good benchmark to test the elastic behaviour of porous media, in the challenging case of high porosities and nano-sized microstructures. Classically used for these systems, Kendall's approach explicitly considers the effect of surface adhesive forces onto the contact area between the particles. This approach provides the Young's modulus using a single adjustable parameter (the adhesion energy) but provides no further information on the tensorial nature and possible anisotropy of elasticity. On the other hand, homogenization approaches (e.g. rule of mixtures, and Eshelby, Mori-Tanaka and self-consistent schemes), based on continuum mechanics and asymptotic analysis, provide the stiffness tensor from the knowledge of the porosity and the elastic constants of the beads. Herein, the self-consistent scheme accurately predicts both bulk and shear moduli, with no adjustable parameter, provided the porosity is less than 35%, for layers composed of particles as small as 15 nm in diameter. Conversely, Kendall's approach is found to predict the Young's modulus over the full porosity range. Moreover, the adhesion energy in Kendall's model has to be adjusted to a value of the order of the fracture energy of the particle material. This suggests that sintering during drying leads to the formation of covalent siloxane bonds between the particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app