Add like
Add dislike
Add to saved papers

Early-Stage Sustainability Evaluation of Nanoscale Cathode Materials for Lithium Ion Batteries.

ChemSusChem 2018 July 12
Results of an early-stage sustainability evaluation of two development strategies for new nanoscale cathode materials for Li-ion batteries are reported: (i) a new production pathway for an existing material (LiCoO2 ) and (ii) a new nanomaterial (LiMnPO4 ). Nano-LiCoO2 was synthesized by a single-source precursor route at a low temperature with a short reaction time, which results in a smaller grain size and, thereby, a better diffusivity for Li ions. Nano-LiMnPO4 was synthesized by a wet chemical method. The sustainability potential of these materials was then investigated (at the laboratory and pilot production scales). The results show that the environmental impact of nano-LiMnPO4 is lower than that of the other examined nanomaterial by several factors regardless of the indicator used for comparison. In contrast to commercial cathode materials, this new material shows, particularly on an energy and capacity basis, results of the same order of magnitude as those of lithium manganese oxide (LiMn2 O4 ) and only slightly higher values than those for lithium iron phosphate (LiFePO4 ); values that are clearly lower than those for high-temperature LiCoO2 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app