Add like
Add dislike
Add to saved papers

One-step Synthesis and Enhanced Thermoelectric Properties of Polymer-Quantum Dot Composite Films.

Angewandte Chemie 2018 July 3
Conventional syntheses of polymer-inorganic composite thermoelectric materials suffer major problems such as inhomogeneity, large particle size, and oxidation that result in ineffective loading. Now a one-step synthesis can be used to fabricate high-quality small-sized anions codoped poly(3,4-ethylenedioxythiophene):dodecylbenzenesulfonate/Cl-tellurium (PEDOT:DBSA/Cl-Te) composite films using a series of novel TeIV -based oxidants. The synchronized production of PEDOT and Te results in thick and homogeneous films containing evenly distributed and well-protected Te quantum dots. Owing to the heavily doped crystalline polymer matrix as well as the <5 nm unoxidized Te quantum dot loading, at low Te concentrations as 2.1-5.8 wt %, the films exhibits high power factors of about 100 μW m-1  K-2 , which is 50 % higher compared to a pure PEDOT:DBSA film.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app