Add like
Add dislike
Add to saved papers

Designing Efficient and Ultralong Pure Organic Room-Temperature Phosphorescent Materials by Structural Isomerism.

Angewandte Chemie 2018 July 3
Pure organic materials with ultralong room-temperature phosphorescence (RTP) are attractive alternatives to inorganic phosphors. However, they generally show inefficient intersystem crossing (ISC) owing to weak spin-orbit coupling (SOC). A design principle based on the realization of small energy gap between the lowest singlet and triplet states (ΔEST ) and pure ππ* configuration of the lowest triplet state (T1 ) via structural isomerism was used to obtain efficient and ultralong RTP materials. The meta isomer of carbazole-substituted methyl benzoate exhibits an ultralong lifetime of 795.0 ms with a quantum yield of 2.1 %. Study of the structure-property relationship shows that the varied steric and conjugation effects imposed by ester substituent at different positions are responsible for the small ΔEST and pure ππ* configuration of T1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app