Add like
Add dislike
Add to saved papers

Organic solvent removal by pervaporation membrane technology: experimental and simulation.

This work presents purification of cyclohexane using polydimethylsiloxane (PDMS) membranes in pervaporation (PV) process. The PDMS is a rubbery polymer and appropriate as membrane material for purification of cyclohexane. PV which is a low-energy separation process was chosen for purification of cyclohexane due to its superior advantages compared to other processes. Effect of feed concentration on separation factor was investigated in order to optimize the process. It was indicated that dehydration of 80 wt% cyclohexane mixture at a temperature of 300 K and a vacuum pressure of 10 mmHg could be effectively achieved and high separation factor of 2500 was obtained. Furthermore, a two-dimensional mechanistic model was proposed for predicting mass transfer of cyclohexane in the process. The mechanistic model accounts for mass transfer of cyclohexane across the membrane, and concentration distribution of cyclohexane was determined. It was revealed that the most mass transfer flux of cyclohexane occur at the region near the inlet of feed channel, while the flux at the upper side of the module reaches zero value due to the effect of velocity distribution on the convective mass transfer of cyclohexane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app