Add like
Add dislike
Add to saved papers

Efficiency analysis of the electrocoagulation and electroflotation treatment of poultry slaughterhouse wastewater using aluminum and graphite anodes.

The application of electrocoagulation (EC) and electroflotation (EF) was investigated for the treatment of poultry slaughterhouse wastewater in a bench scale unit cell electrolyzer with different EC-to-EF ratios at current densities of 3, 9, and 15 mA cm-2 . The EC-to-EF ratio was controlled by current reversal using aluminum and graphite electrodes. The electrochemical treatment showed satisfactory removal efficiencies for Al coagulant loads greater than 51.8 mg L-1 . The 4/5 EC to EF ratio (69.1 mg L-1 Al and 32.2 NmL L-1 additional EF gas) and 3/5 (51.8 mg L-1 Al/64 NmL L-1 additional EF gas) presented the best results for the removal of COD (76-85%), color (93-99%), and turbidity (95-99%), with the additional benefit of reducing the electrode consumption and sludge disposal costs proportionally to the EC-to-EF ratio. The effects of the EC-to-EF ratio and the current density on efficiency of the electrochemical treatment for the removal of COD, apparent color, turbidity, TSS, TSD, and NH3 -N were discussed in the light of the physicochemical and electrochemical processes underlying the removal mechanism for each parameter. In particular, the blow-off mechanism seems to play an important role in the NH3 -N removal, whereas indirect electrooxidation mechanism accounts for a fraction of the soluble COD removal for the electrodes configuration used in the treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app