Add like
Add dislike
Add to saved papers

Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats.

Despite their clinical benefits in cancer treatment, the deleterious effects on heart following chemo/radiotherapy are of increasing importance. Zingerone, a natural polyphenol, possesses multiple biological activities, such as antioxidant and anti-inflammatory. Thus, the current study was designed to assess the potential cardioprotective effects of zingerone against cisplatin or γ-radiation. Zingerone was given by intragastric intubation (25 mg/kg) daily for three successive weeks prior to the induction of cardiotoxicity using a single dose of cisplatin (20 mg/kg, i.p.) or a whole body γ-irradiation at a single dose of 6 Gy. Zingerone pre-treatment significantly reduced the abnormalities in heart histology and the increase in the cardiotoxicity indices, serum lactate dehydrogenase, and creatine kinase-MB activities, as well as plasma cardiac troponin T and B-natriuretic peptide, induced by cisplatin or γ-radiation. Further, zingerone, except for superoxide dismutase, notably ameliorated the state of oxidative stress as evidenced by a significant decrease in malondialdehyde level accompanied with a significant increase in the reduced glutathione content and catalase activity. Additionally, zingerone mitigated the increase in the inflammatory markers including serum level of tumor necrosis factor-alpha, cardiac myeloperoxidase activity, and cyclooxygenase-2 protein expression. Moreover, zingerone alleviated the elevation of caspase-3 gene expression and the prominent nuclear DNA fragmentation and attenuated the decrease in mitochondrial complexes' activities. This study sheds the light on a probable protective role of zingerone as an antioxidant, anti-inflammatory, and antiapoptotic agent against cisplatin- or γ-radiation-induced cardiotoxicity and holds a potential in regard to therapeutic intervention for chemo/radiotherapy mediated cardiac damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app