Add like
Add dislike
Add to saved papers

Biofouling control and sludge properties promotion through quorum quenching in membrane bioreactors at two aeration intensities.

OBJECTIVE: A modified method was used for cell entrapped beads (CEBs) preparation and two aeration intensities (low and high aeration intensity) was supplied as factors to investigate the change of quorum quenching performance for membrane biofouling in membrane bioreactor (MBR).

RESULTS: Dehydrogenase activity and growth trend of activated sludge were improved at high aeration intensity. Compared with C-MBR (with vacant beads), QQ-MBR (with CEBs) had more stable quorum quenching activity and longer application time at high aeration intensity, in which the proteins and polysaccharides were reduced by 15 and 20%, respectively. The difference of EPS concentration in mixed liquor was attributed to the protein concentration controlled by quorum quenching bacteria, meanwhile sufficient organics was necessary to maintain the process.

CONCLUSIONS: The better settleability, greater stability and relatively lower hydrophobicity of activated sludge properties was achieved with quorum quenching. The scouring effect of CEBs was promoted at high aeration intensity, further controlling the membrane biofouling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app