Add like
Add dislike
Add to saved papers

Eco-friendly reduced graphene oxide for the determination of mycophenolate mofetil in pharmaceutical formulations.

Graphene oxide (GO) was synthesized and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). GO was then electrochemically reduced and used for electrochemical study of mycophenolate mofetil (MMF). The electrochemically reduced graphene oxide (ERGO) film on glassy carbon electrode (GCE) showed enhanced peak current for electrooxidation of MMF. MMF exhibited two irreversible oxidation peaks at 0.84 V (peak a1 ) and 1.1 V (peak a2 ). Effects of accumulation time, pH and scan rate were studied and various electrochemical parameters were calculated. A differential pulse voltammetric method was developed for the determination of MMF in bulk samples and pharmaceutical formulations. Linear relationship was observed between the peak current and concentration of MMF in the range of 40 nM-15 μM with a limit of detection of 11.3 nM. The proposed method is simple, sensitive and inexpensive and, hence, could be readily adopted in clinical and quality control laboratories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app