Add like
Add dislike
Add to saved papers

Niclosamide ethanolamine improves diabetes and diabetic kidney disease in mice.

Diabetes and its renal complications are major medical challenges worldwide. There are no effective drugs currently available for treating diabetes and diabetic kidney disease (DKD), especially in type 1 diabetes (T1D). Evidence has suggested that niclosamide ethanolamine salt (NEN) could improve diabetic symptoms in mice of type 2 diabetes (T2D). However, its role in T1D and DKD has not been studied to date. Here we report that NEN could protect against diabetes in streptozotocin (STZ) induced T1D mice. It increased serum insulin levels, corrected the unbalanced ratio of α-cells to β-cells, and induced islet morphologic changes under diabetic conditions. In addition, NEN could impede the progression of DKD in T1D. Specifically, it reduced urinary albumin levels, NAG, NGAL and TGF-β1 excretion, ameliorated renal hypertrophy, alleviated podocyte dysfunction, and suppressed the renal cortical activation of mTOR/4E-BP1 signaling pathway. Moreover, it is hepatoprotective and does not exhibit heart toxicity. Therefore, these findings open up a completely novel therapy for diabetes and DKD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app