Add like
Add dislike
Add to saved papers

Pharmaceutical Machine Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule Inhibitors of Complement Factor C1s.

Biomolecules 2018 May 8
When excessively activated, C1 is insufficiently regulated, which results in tissue damage. Such tissue damage causes the complement system to become further activated to remove the resulting tissue damage, and a vicious cycle of activation/tissue damage occurs. Current Food and Drug Administration approved treatments include supplemental recombinant C1 inhibitor, but these are extremely costly and a more economical solution is desired. In our work, we have utilized an existing data set of 136 compounds that have been previously tested for activity against C1. Using these compounds and the activity data, we have created models using principal component analysis, genetic algorithm, and support vector machine approaches to characterize activity. The models were then utilized to virtually screen the 72 million compound PubChem repository. This first round of virtual high-throughput screening identified many economical and promising inhibitor candidates, a subset of which was tested to validate their biological activity. These results were used to retrain the models and rescreen PubChem in a second round vHTS. Hit rates for the first round vHTS were 57%, while hit rates for the second round vHTS were 50%. Additional structure⁻property analysis was performed on the active and inactive compounds to identify interesting scaffolds for further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app