Add like
Add dislike
Add to saved papers

Two dd-Carboxypeptidases from Mycobacterium smegmatis Affect Cell Surface Properties through Regulation of Peptidoglycan Cross-Linking and Glycopeptidolipids.

During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso -diaminopimelic acids [ meso -DAPs]) and 4-3 cross-links (between d-Ala and meso -DAP), though there is a predominance (60 to 80%) of 3-3 cross-links. The dd-carboxypeptidases (dd-CPases) act on pentapeptides to generate tetrapeptides that are used by ld-transpeptidases as substrates to form 3-3 cross-links. Therefore, dd-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of dd-CPases in mycobacteria is relatively unexplored. In this study, we deleted two dd-CPase genes, msmeg_2433 and msmeg_2432 , both individually and in combination, from Mycobacterium smegmatis mc2 155. Though the single dd-CPase gene deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double-deletion mutant, viz , a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced, and susceptibility to β-lactams and antitubercular agents was enhanced. Moreover, the survival rate of the double mutant within murine macrophages was higher than that of the parent. Interestingly, the complementation with any one of the dd-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3 to 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation, drug susceptibility, and subsistence of the cells within macrophages. IMPORTANCE The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The dd-CPases generate tetrapeptides by acting on the pentapeptides, and ld-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. In this study, we showed that simultaneous deletions of two dd-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression of glycopeptidolipids (significant surface lipid present in many nontuberculous mycobacteria, including Mycobacterium smegmatis ) and affect other physiological parameters, like cell morphology, growth rate, biofilm formation, antibiotic susceptibility, and survival within murine macrophages. Thus, unraveling the physiology of dd-CPases might help us design antimycobacterial therapeutics in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app