Add like
Add dislike
Add to saved papers

"Catch-and-Release" Anti-Carcinoembryonic Antigen Monoclonal Antibody Leads to Greater Plasma and Tumor Exposure in a Mouse Model of Colorectal Cancer.

In this study, we examined the effects of target expression, neonatal Fc receptor (FcRn) expression in tumors, and pH-dependent target binding on the disposition of monoclonal antibodies (mAbs) in murine models of colorectal cancer. A panel of anti-carcinoembryonic antigen (CEA) mAbs was developed via standard hybridoma technology and then evaluated for pH-dependent CEA binding. Binding was assessed via immunoassay and radioligand binding assays. 10H6, a murine IgG1 mAb with high affinity for CEA at pH = 7.4 ( K D = 12.6 ± 1.7 nM) and reduced affinity at pH = 6.0 ( K D = 144.6 ± 21.8 nM), and T84.66, which exhibits pH-independent CEA binding ( K D = 1.1 ± 0.11 and 1.4 ± 0.16 nM at pH 7.4 and 6.0), were selected for pharmacokinetic investigations. We evaluated pharmacokinetics after intravenous administration to control mice and to mice bearing tumors with (MC38CEA+ , LS174T) and without (MC38CEA- ) CEA expression and with or without expression of murine FcRn, at doses of 0.1, 1, and 10 mg/kg. 10H6 displayed linear pharmacokinetics in mice bearing MC38CEA+ or MC38CEA- tumors. T84.66 displayed linear pharmacokinetics in mice with MC38CEA- tumors but dose-dependent nonlinear pharmacokinetics in mice bearing MC38CEA+ In addition to the improved plasma pharmacokinetic profile (i.e., linear pharmacokinetics, longer terminal half-life), 10H6 exhibited improved exposure in MC38CEA+ tumors relative to T84.66. In mice bearing tumors with CEA expression, but lacking expression of murine FcRn (LS174T), 10H6 demonstrated nonlinear pharmacokinetics, with rapid clearance at low dose. These data are consistent with the hypothesis that pH-dependent CEA binding allows mAb dissociation from target in acidified endosomes, enabling FcRn-mediated protection from target-mediated elimination in mice bearing MC38CEA+ tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app