Add like
Add dislike
Add to saved papers

Effects of intrathecal administration of orexin-1 receptor antagonist on antinociceptive responses induced by chemical stimulation of lateral hypothalamus in an animal model of tonic nociception.

Neuropeptides 2018 June
Orexins are produced in the restricted regions of the lateral hypothalamus (LH). However, orexinergic receptors and projections are localized in wide regions like nucleus accumbens, ventral tegmental area, periaqueductal gray area and spinal cord which are involved in the pain modulation. This study was carried out to investigate the effects of intrathecal administration of orexin-1 receptor antagonist (SB-334867) in the spinal antinociception induced by intra-LH administration of carbachol (cholinergic receptor agonist) in both early and late phases of pain related behaviors in formalin test. In this study, pain-related behaviors (pain scores) were evaluated using the formalin test during 5-min block intervals for a 60-min period in seventy male Wistar rats were given SB-334867 (3, 10, 30 and 100 μM/10 μl) or vehicle (DMSO 12%; 10 μl) intrathecally following intra-LH administration of carbachol (250 nM/rat). Our data showed that intra-LH injection of carbachol attenuated the formalin-induced biphasic pain responses, and intrathecal administration of SB-334867 dose-dependently decreased LH stimulation-induced antinociceptive responses during both phases. Moreover, administration of different doses of SB-334867 during the early phase were more effective than those during the late phase. The antinociceptive role of orexinergic system in the formalin test through a neural pathway from the LH to the spinal cord provides evidence that orexins can be useful in therapeutic targets for pain relief.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app