Add like
Add dislike
Add to saved papers

The Effect of Suture Materials on the Biomechanical Performance of Different Flexor Tendon Repairs and the Concept of Construct Efficiency.

BACKGROUND: To propose a new term ('construct efficiency') for the evaluation of multi strands flexor tendon repairs using different suture materials.

METHODS: A total of twenty specimens from 4-0 braided polyblend sutures (FiberLoop/FiberWire; Arthrex, Naples, FL) and 4-0 nylon sutures (Supramid Extra II; S. Jackson, Inc., Alexandria, VA) were subjected to tensile testing using Pneumatic Cord-and-Yarn Grips (Instron Corp., Canton MA, USA). The ultimate tensile strengths of the suture materials were measured. The expected repair strengths and construct efficiencies were computed based on the experimental results and from available literature on actual repair strengths of the 4-strand Becker, Cruciate repairs and 6-strand Tang, modified Lim-Tsai repairs.

RESULTS: The ultimate tensile strength of nylon suture was 15.4 ± 0.6N, lower than that of braided polyblend suture (45.3 ± 2.3N) with a difference of 194%. The construct efficiency of multi strand repairs varied with respect to different repair techniques and suture materials. It was found that the Becker repairs using FiberWire had the highest construct efficiency (55.7%) followed by the modified Lim-Tsai using Supramid (50.9%), Tang repair using Supramid (49.8%), Cruciate repair using Fiberwire (49.1%), and modified Lim-Tsai repair using FiberLoop (33.5%).

CONCLUSIONS: The construct efficiency is more accurate in showing that, in terms of biomechanical strength, the use of FiberWire for the 4-strand Becker and Cruciate repair is more efficient than that of using FiberLoop for 6-strand modified Lim-Tsai repair.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app