Add like
Add dislike
Add to saved papers

Theoretical Insights into the Retinal Dynamics of Vascular Endothelial Growth Factor in Patients Treated with Ranibizumab, Based on an Ocular Pharmacokinetic/Pharmacodynamic Model.

Neovascular age-related macular degeneration (wet AMD) results from the pathological angiogenesis of choroidal capillaries, which leak fluid within or below the macular region of the retina. The current standard of care for treating wet AMD utilizes intravitreal injections of anti-VEGF antibodies or antibody fragments to suppress ocular vascular endothelial growth factor (VEGF) levels. While VEGF suppression has been demonstrated in wet AMD patients by serial measurements of free-VEGF concentrations in aqueous humor samples, it is presumed that anti-VEGF molecules also permeate across the inner limiting membrane (ILM) of the retina as well as the retinal pigmented epithelium (RPE) and suppress VEGF levels in the retina and/or choroidal regions. The latter effects are inferred from serial optical coherence tomography (OCT) measurements of fluid in the retinal and sub-retinal spaces. In order to gain theoretical insights to the dynamics of retinal levels of free-VEGF following intravitreal injection of anti-VEGF molecules, we have extended our previous two-compartment pharmacokinetic/pharmacodynamic (PK/PD) model of ranibizumab-VEGF suppression in vitreous and aqueous humors to a three-compartment model that includes the retinal compartment. In the new model, reference values for the macromolecular permeability coefficients between retina and vitreous ( pILM ) and between retina and choroid ( pRPE ) were estimated from PK data obtained in rabbit. With these values, the three-compartment model was used to re-analyze the aqueous humor levels of free-VEGF obtained in wet AMD patients treated with ranibizumab and to compare them to the simulated retinal levels of free-VEGF, including the observed variability in PK and PD. We have also used the model to explore the impact of varying pILM and pRPE to assess the case in which an anti-VEGF molecule is impermeable to the ILM and to assess the potential effects of AMD pathology on the RPE barrier. Our simulations show that, for the reference values of pILM and pRPE , the simulated duration of VEGF suppression in the retina is approximately 50% shorter than the observed duration of VEGF suppression in the aqueous humor, a finding that may explain the short duration of suppressed disease activity in the "high anti-VEGF demand" patients reported by Fauser and Muether ( Br. J. Ophthalmol. 2016, 100, 1494-1498 ). At 10-fold lower values of pRPE , the durations of VEGF suppression in the retina and aqueous humor are comparable. Lastly we have used the model to explore the impact of dose and binding parameters on the duration and depth of VEGF suppression in the aqueous and retinal compartments. Our simulations with the three-compartment PK/PD model provide new insights into inter-patient variability in response to anti-VEGF therapy and offer a mechanistic framework for developing treatment regimens and molecules that may prolong the duration of retinal VEGF suppression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app