Add like
Add dislike
Add to saved papers

Design and development of microemulsion systems of a new antineoplaston A10 analog for enhanced intravenous antitumor activity: In vitro characterization, molecular docking, 125 I-radiolabeling and in vivo biodistribution studies.

A10, (3-phenylacetylamino-2,6-piperidinedione), is a natural peptide with broad antineoplastic activity. Recently, in vitro antitumor effect of a new A10 analog [3-(4-methoxybenzoylamino)-2,6-piperidinedione] (MPD) has been verified. However, poor aqueous solubility represents an obstacle towards intravenous formulation of MPD and impedes successful in vivo antitumor activity. To surmount such limitation, MPD microemulsion (MPDME) was developed. A 31 22 full factorial design using Design-Expert® software was adopted to study the influence of different parameters and select the optimum formulation (MPDME1). Transmission electron microscopy (TEM) displayed spherical droplets of MPDME1. The cytotoxicity of MPDME1 in Michigan Cancer Foundation 7 (MCF-7) breast cancer cell line exceeded that of MPD solution (MPDS) and tamoxifen. Compatibility with injectable diluents, in vitro hemolytic studies and in vivo histopathological examination confirmed the safety of parenteral application of MPDME1. Molecular docking results showed almost same binding affinity of A10, MPD and 125 I-MPD with histone deacetylase 8 (HDAC8) receptor. Accordingly, radioiodination of MPDME1 and MPDS was done via direct electrophilic substitution reaction. Biodistribution of 125 I-MPDME1 and 125 I-MPDS in normal and tumor (ascites and solid) bearing mice showed high accumulation of 125 I-MPDME1 in tumor tissues. Overall, the results proved that MPDME represents promising parenteral delivery system capable of improving antineoplastic activity of MPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app