Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Fabricating High-viscosity Droplets using Microfluidic Capillary Device with Phase-inversion Co-flow Structure.

The generation of monodisperse droplets with high viscosity has always been a challenge in droplet microfluidics. Here, we demonstrate a phase-inversion co-flow device to generate uniform high-viscosity droplets in a low-viscosity fluid. The microfluidic capillary device has a common co-flow structure with its exit connecting to a wider tube. Elongated droplets of the low-viscosity fluid are first encapsulated by the high-viscosity fluid in the co-flow structure. As the elongated low-viscosity droplets flow through the exit, which is treated to be wetted by the low-viscosity fluid, phase inversion is then induced by the adhesion of the low viscosity droplets to the tip of the exit, which results in the subsequent inverse encapsulation of the high-viscosity fluid. The size of the resultant high-viscosity droplets can be adjusted by changing the flow rate ratio of the low-viscosity fluid to the high-viscosity fluid. We demonstrate several typical examples of the generation of high-viscosity droplets with a viscosity up to 11.9 Pas, such as glycerol, honey, starch, and polymer solution. The method provides a simple and straightforward approach to generate monodisperse high-viscosity droplets, which may be used in a variety of droplet-based applications, such as materials synthesis, drug delivery, cell assay, bioengineering, and food engineering.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app