Add like
Add dislike
Add to saved papers

Temporal Profiling Establishes a Dynamic S-Palmitoylation Cycle.

S-palmitoylation is required for membrane anchoring, proper trafficking, and the normal function of hundreds of integral and peripheral membrane proteins. Previous bioorthogonal pulse-chase proteomics analyses identified Ras family GTPases, polarity proteins, and G proteins as rapidly cycling S-palmitoylated proteins sensitive to depalmitoylase inhibition, yet the breadth of enzyme regulated dynamic S-palmitoylation largely remains a mystery. Here, we present a pulsed bioorthogonal S-palmitoylation assay for temporal analysis of S-palmitoylation dynamics. Low concentration hexadecylfluorophosphonate (HDFP) inactivates the APT and ABHD17 families of depalmitoylases, which dramatically increases alkynyl-fatty acid labeling and stratifies S-palmitoylated proteins into kinetically distinct subgroups. Most surprisingly, HDFP treatment does not affect steady-state S-palmitoylation levels, despite inhibiting all validated depalmitoylating enzymes. S-palmitoylation profiling of APT1-/- /APT2-/- mouse brains similarly show no change in S-palmitoylation levels. In comparison with hydroxylamine-switch methods, bioorthogonal alkynyl fatty acids are only incorporated into a small fraction of dynamic S-palmitoylated proteins, raising the possibility that S-palmitoylation is more stable than generally characterized. Overall, disrupting depalmitoylase activity enhances alkynyl fatty acid incorporation, but does not greatly affect steady state S-palmitoylation across the proteome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app