Add like
Add dislike
Add to saved papers

Enhanced Piezoelectric Response in Hybrid Lead Halide Perovskite Thin Films via Interfacing with Ferroelectric PbZr 0.2 Ti 0.8 O 3 .

We report a more than 10-fold enhancement of the piezoelectric coefficient d33 of polycrystalline CH3 NH3 PbI3 (MAPbI3 ) films when interfacing them with ferroelectric PbZr0.2 Ti0.8 O3 (PZT). Piezoresponse force microscopy (PFM) studies reveal [Formula: see text] values of 0.3-0.4 pm/V for MAPbI3 deposited on Au, indium tin oxide, and SrTiO3 surfaces, with small phase angle fluctuating at length scales smaller than the grain size. In sharp contrast, on samples prepared on epitaxial PZT films, we observe large-scale polar domains exhibiting clear, close to 180° PFM phase contrasts, pointing to polar axes along the film normal. By separating the piezoresponse contributions from the MAPbI3 and PZT layers, we extract a significantly higher [Formula: see text] of ∼4 pm/V, which is attributed to the enhanced alignment of the MA molecular dipoles promoted by the unbalanced surface potential of PZT. We also discuss the effect of the interfacial screening layer on the preferred polar direction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app