Add like
Add dislike
Add to saved papers

HCC Specific Protein Network Involving Interactions of EGFR with A-Raf and Transthyretin: Experimental Analysis and Computational Biology Correlates.

The network interactions link human disease proteins to regulatory cellular pathways leading to better understanding of protein functions and cellular processes. Revealing the network of signaling pathways in cancer through protein-protein interactions at molecular level enhances our understanding of hepatocellular carcinoma (HCC). A rodent model for study of HCC was developed by administrating N-Nitrosodiethylamine (DEN) and 2-aminoacetylfluorine (2-AAF) to male Wistar rats. Proteomic approaches such as 2D- Electrophoresis, PD-Quest, MALDI-TOF-MS and Western blot analyses have been used to identify, characterize and validate the differentially expressed proteins in HCC-bearing animals vis-a-vis controls. The step-wise analysis of morphological and histological parameters revealed HCC induction and tumorigenesis at 1 and 4 months after carcinogen treatment, respectively. We report a novel protein network of 735 different proteins out of which eight proteins are characterized by MALDI-TOF-MS analysis soon after HCC was chemically induced in rats. We analyzed four different novel routes representing the association of experimentally identified proteins with HCC progression. The study suggests that A-Raf, transthyretin and epidermal growth factor receptor play major role in HCC progression by regulating MAPK signaling pathway and lipid metabolism leading to continuous proliferation, neoplastic transformation and tumorigenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app