Add like
Add dislike
Add to saved papers

NMR study on the demineralization mechanism of the enamel and dentin surfaces in MDP-based all-in-one adhesive.

The acidic monomers utilized in all-in-one adhesives play a key role in the enamel and dentin bonding performance. The purpose of this study is to investigate the mechanism by which 10-methacryloyloxydecyl dihydrogen phosphate (MDP) demineralizes the enamel and dentin surfaces prepared by a diamond bur in three types of experimental MDP-based all-in-one (EX) adhesives containing different amounts of water (46.6, 93.2 and 208.1 mg/g). The enamel and dentin reactants of EX adhesives were analyzed using solidstate phosphorous-31 nuclear magnetic resonance and X-ray diffraction. Increased amount of water led to increases in the efficacy by which MDP demineralizes the enamel and dentin surfaces. However, the rate of calcium salts of MDP produced slowed down at the water concentrations above 93.2 mg/g. The dentin yielded greater amounts of di-calcium salts of the MDP monomer and dimer than the enamel, which develops a different type of layered structure of MDP from the enamel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app