Add like
Add dislike
Add to saved papers

Combining Promiscuous Acyl-CoA Oxidase and Enoyl-CoA Carboxylase/Reductases for Atypical Polyketide Extender Unit Biosynthesis.

The incorporation of different extender units generates structural diversity in polyketides. There is significant interest in engineering substrate specificity of polyketide synthases (PKSs) to change their chemical structure. Efforts to change extender unit selectivity are hindered by the lack of simple screening methods and easily available atypical extender units. Here, we present a chemo-biosynthetic strategy that employs biocatalytic proofreading and allows access to a large variety of extender units. First, saturated acids are chemically coupled to free coenzyme A (CoA). The corresponding acyl-CoAs are then converted to alkylmalonyl-CoAs in a "one-pot" reaction through the combined action of an acyl-CoA oxidase and enoyl-CoA carboxylase/reductase. We synthesized six different extender units and used them in in vitro competition screens to investigate active site residues conferring extender unit selectivity. Our results show the importance of an uncharacterized glutamine in extender unit selectivity and open the possibility for comprehensive studies on extender incorporation in PKSs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app