Add like
Add dislike
Add to saved papers

Urban particulate matter in air pollution penetrates into the barrier-disrupted skin and produces ROS-dependent cutaneous inflammatory response in vivo.

BACKGROUND: Particulate matter (PM) is an integral part of air pollution, which is a mixture of particles suspended in the air. Recently, it has been reported that PM is associated with increased risks of skin diseases, especially atopic dermatitis in children. However, it is unclear if PM directly goes into the skin and what mechanisms are involved in response to PM.

OBJECTIVE: To see whether PM could penetrate into the barrier-disrupted skin, produce reactive oxygen species (ROS), and elicit an inflammatory response.

METHODS: We collected PMs during a winter in Seoul and used cultured keratinocytes for in vitro study and tape-stripped BALB/c mice for in vivo study.

RESULTS: Keratinocyte cytotoxicity increased in a dose-dependent manner by PM treatment. IL-8 and MMP-1 mRNA expression and protein levels were significantly increased compared to control by qPCR and ELISA, respectively. Cellular ROS production was increased by PM treatment, and antioxidant N-acetyl cysteine pretreatment prevented induction of inflammatory cytokines IL-8 and MMP-1. In PM-treated keratinocytes, electron-dense subcellular particles were observed by transmission electron microscopy. PM was observed inside hair follicles in both intact and barrier-disrupted skin in vivo. Additionally, intercellular penetration of PM was seen in the barrier-disrupted skin. Repeated PM application induced epidermal thickening and dermal inflammation with neutrophil infiltration. Finally, N-acetyl cysteine could ameliorate skin inflammation induced by PM application.

CONCLUSION: PM penetrates into the barrier-disrupted skin, causing inflammation, demonstrating detrimental effects in the skin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app