Add like
Add dislike
Add to saved papers

Molecular cloning and characterization of a gonadotropin-releasing hormone receptor homolog in the Chinese mitten crab, Eriocheir sinensis.

Gene 2018 July 31
As an essential mediator in the Gonadotropin-releasing hormone (GnRH) signaling pathway, GnRH receptor (GnRHR) coupled to GnRH, plays an important role in activating the downstream pathway after stimulating a series of cascades to regulate reproduction. To detect the existence of GnRHR and potential GnRH signaling pathway, we cloned and characterized GnRHR in the Chinese mitten crab, Eriocheir sinensis (named EsGnRHR). The full-length EsGnRHR cDNA is 2038 bp in length, including an open reading frame (ORF) of 1566 bp, a 57 bp 5'-untranslated region (5'-UTR) and a 415 bp 3'-UTR. Prediction of transmembrane domains in protein sequence revealed that the EsGnRHR protein contained seven hydrophobic transmembrane regions (TMs). Reverse transcription PCR revealed that EsGnRHR was mainly expressed in the thoracic nerve group and ovary, and weakly distributed in the testis and brain. In situ hybridization further demonstrated that EsGnRHR mRNA was localized at the protocerebrum and deutocerebrum. In the ovary and testis, the hybridization signal was dominantly at the earlier developmental stages. The signal was mainly localized in the cytoplasm cell in the ovary, and in the epithelium cell in the testis. During the different stages of gonadal development, EsGnRHR displayed increasing trends in both female and male when analyzed by quantitative real-time PCR, suggesting that EsGnRHR was involved in controlling gonadal development. Our study provides important information for further research on the molecular mechanisms underlying crab development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app