Add like
Add dislike
Add to saved papers

A real time screening assay for cannabinoid CB1 receptor-mediated signaling.

The cannabinoid CB1 receptor is expressed throughout the central nervous system where it functions to regulate neurotransmitter release and synaptic plasticity. While the CB1 receptor has been identified as a target for both natural and synthetic cannabinoids, the specific downstream signaling pathways activated by these various ligands have not been fully described. In this study, we developed a real-time membrane potential fluorescent assay for cannabinoids using pituitary AtT20 cells that endogenously express G protein-gated inward rectifier K+ (GIRK) channels and were stably transfected with the CB1 receptor using a recombinant lentivirus. In whole-cell patch clamp experiments application of the cannabinoid agonist WIN 55,212-2 to AtT20 cells expressing the CB1 receptor (AtT20/CB1) activated GIRK currents that were blocked by BaCl2 . WIN 55,212-2 activation of the GIRK channels was associated with a time- and concentration-dependent (EC50  = 309 nM) hyperpolarization of the membrane potential in the AtT20/CB1 cells when monitored using a fluorescent membrane potential-sensitive dye. The WIN 55,212-2-induced fluorescent signal was inhibited by pretreatment of the cells with either the GIRK channel blocker tertiapin-Q or the CB1 receptor antagonist SR141716. The cannabinoids displayed a response of WIN 55,212-2 ≈ anandamide (AEA) > CP 55,940 > Δ9 -tetrahydrocannabinol (THC) when maximal concentrations of the four ligands were tested in the assay. Thus, the AtT20/CB1 cell fluorescent assay will provide a straightforward and efficient methodology for examining cannabinoid-stimulated Gi signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app