Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

N-myc downstream-regulated gene 1 facilitates influenza A virus replication by suppressing canonical NF-κB signaling.

Virus Research 2018 July 3
The highly pathogenic avian influenza (HPAI) A/H5N1 virus hijacks host cellular machinery to complete its life cycle; identification of the host factors involved in viral replication may facilitate antiviral drug development. Here, we first characterize a metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), and showed that it plays a crucial role in H5N1 viral replication. We found that H5N1 infection upregulated NDRG1 mRNA and protein expression. Overexpression of NDRG1 released approximately 4-fold more virions compared to the control group, whereas knockdown of NDRG1 resulted in a drop in viral RNA and protein production. Further investigation revealed that NDRG1 facilitated HPAI A/H5N1 viral replication by suppressing the canonical NF-κB signaling pathway. Furthermore, our results also showed that the NDRG1 mRNA level was mainly stimulated by M1 and PB1 viral proteins. Overall, our results suggest that NDRG1 plays a positive role in HPAI replication by suppressing the canonical NF-κB signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app