Add like
Add dislike
Add to saved papers

Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072.

In the present study, a novel α-amylase produced by Bacillus amyloliquefaciens BH072 was purified and characterized. The molecular weight of purified α-amylase was approximately 68 kDa, determined by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and ten amino acid of N-terminal was NSGLNGYLTH. The kinetic parameters Km and Vmax were 4.27 ± 0.21 mg/mL and 987.34 ± 23.34 U/mg, respectively. Purified α-amylase showed maximal activity at pH 7 and 60 °C. Enzyme remained stable in pH range 6.0-7.0 and 50-80 °C. The activity of the α-amylase was Ca2+ independent and stability in the presence of surfactant, oxidizing and bleaching agents. The β-mercaptoethanol and EDTA greatly enhanced and reduced α-amylase activity, respectively. This enzyme has high hydrolysis rate toward corn, wheat and potato starch and hydrolyzes soluble starch to glucose, maltose, maltotriose and maltotetraose, indicating that the α-amylase represents a promising candidate for applications in the food industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app