Add like
Add dislike
Add to saved papers

Stimulation-dependent remodeling of the corticospinal tract requires reactivation of growth-promoting developmental signaling pathways.

Experimental Neurology 2018 September
The corticospinal tract (CST) can become damaged after spinal cord injury or stroke, resulting in weakness or paralysis. Repair of the damaged CST is limited because mature CST axons fail to regenerate, which is partly because the intrinsic axon growth capacity is downregulated in maturity. Whereas CST axons sprout after injury, this is insufficient to recover lost functions. Chronic motor cortex (MCX) electrical stimulation is a neuromodulatory strategy to promote CST axon sprouting, leading to functional recovery after CST lesion. Here we examine the molecular mechanisms of stimulation-dependent CST axonal sprouting and synapse formation. MCX stimulation rapidly upregulates mTOR and Jak/Stat signaling in the corticospinal system. Chronic stimulation, which leads to CST sprouting and increased CST presynaptic sites, further enhances mTOR and Jak/Stat activity. Importantly, chronic stimulation shifts the equilibrium of the mTOR repressor PTEN to the inactive phosphorylated form suggesting a molecular transition to an axon growth state. We blocked each signaling pathway selectively to determine potential differential contributions to axonal outgrowth and synapse formation. mTOR blockade prevented stimulation-dependent axon sprouting. Surprisingly, Jak/Stat blockade did not abrogate sprouting, but instead prevented the increase in CST presynaptic sites produced by chronic MCX stimulation. Chronic stimulation increased the number of spinal neurons expressing the neural activity marker cFos. Jak/Stat blockade prevented the increase in cFos-expressing neurons after chronic stimulation, confirming an important role for Jak/Stat signaling in activity-dependent CST synapse formation. MCX stimulation is a neuromodulatory repair strategy that reactivates distinct developmentally-regulated signaling pathways for axonal outgrowth and synapse formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app