Add like
Add dislike
Add to saved papers

The 3D reconstructions of female pelvic autonomic nerves and their related organs based on MRI: a first step towards neuronavigation during nerve-sparing radical hysterectomy.

European Radiology 2018 November
OBJECTIVES: To present in vivo female pelvic autonomous innervation and the relationship between nerves and their related organs by three-dimensional (3D) reconstruction based on magnetic resonance imaging (MRI).

METHODS: Thirty patients with cervical cancer who underwent pelvic MRI and agreed to undergo additional magnetic resonance neurography (MRN) sequences were enrolled in the present study. MRI images from the same patient were acquired using T2-weighted fat saturation (T2W FS) and 3D-STIR-SPACE sequences. Detailed two-dimensional (2D) segmentation and 3D reconstruction of pelvic autonomic nerves (PAN) were performed on the basis of the images of the two sequences using 3D reconstruction software. The 2D segmentation and 3D reconstruction of pelvic organs were based on T2W FS images. The consistency of the 3D models of pelvic autonomous innervation constructed from the two sequences were analysed and compared, the pelvic autonomous innervation was presented, and the relationship between nerves and their related organs was characterised.

RESULTS: The 3D reconstructions of PAN were successfully obtained from 3D-STIR-SPACE and T2W FS sequences in 30 patients and showed high correspondence. T2W FS images also enabled 3D reconstructions of pelvic organs to visualise the 3D distribution of PAN and the positional relationships between nerves and their related organs.

CONCLUSION: The pelvic autonomic nerves and their related organs can be reconstructed on the basis of MRI to present personalised 3D anatomical information and offer individualised guidance during nerve-sparing radical hysterectomy (NSRH).

KEY POINTS: • Nerve-sparing radical hysterectomy is a developing trend in cervical cancer surgery • MRI allows reconstructions of pelvic autonomic nerves and their related organs • The 3D reconstructions provide detailed 3D anatomical information on nerves.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app