JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Small Molecule Mimetics of α-Helical Domain of IRAK2 Attenuate the Proinflammatory Effects of IL-33 in Asthma-like Mouse Models.

IL-33 and its receptor ST2 play important roles in airway inflammation and contribute to asthma onset and exacerbation. The IL-33/ST2 signaling pathway recruits adapter protein myeloid differentiation primary response 88 (MyD88) to transduce intracellular signaling. MyD88 forms a complex with IL-R-associated kinases (IRAKs), IRAK4 and IRAK2, called the Myddosome (MyD88-IRAK4-IRAK2). The myddosome subsequently activates downstream NF-κB and MAPKs p38 and JNK. We established an asthma-like mouse model by intratracheal administration of IL-33. The IL-33 model has a very similar phenotype compared with the OVA-induced mouse asthma model. The importance of MyD88 in the IL-33/ST2 signaling transduction was demonstrated by the MyD88 knockout mice, which were protected from the IL-33-induced asthma. We synthesized small molecule mimetics of the α-helical domain of IRAK2 with drug-like characteristics based on the recent advances in the designing of α-helix compounds. The mimetics can competitively interfere in the protein-protein interaction between IRAK2 and IRAK4, leading to disruption of Myddosome formation. A series of small molecules were screened using an NF-κB promoter assay in vitro. The lead compound, 7004, was further studied in the IL-33-induced and OVA-induced asthma mouse models in vivo. Compound 7004 can inhibit the IL-33-induced NF-κB activity, disrupt Myddosome formation, and attenuate the proinflammatory effects in asthma-like models. Our data indicate that the Myddosome may represent a novel intracellular therapeutic target for diseases in which IL-33/ST2 plays important roles, such as asthma and other inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app