Add like
Add dislike
Add to saved papers

Abrogation of Lupus Nephritis in Somatic Hypermutation-Deficient MRL/lpr Mice.

Systemic lupus erythematosus (SLE) is an autoimmune disease posing threats to multiple organs in the human body. As a typical manifestation of SLE, lupus nephritis is characterized by a series of pathological changes in glomerulus as well as accumulation of pathogenic autoreactive IgG with complement in the kidney that dramatically disrupts renal functions. Activation-induced deaminase (AID), which governs both somatic hypermutation (SHM) and class-switch recombination (CSR), has been shown to be essential for the regulation of SLE. However, the relative contributions of SHM and CSR to SLE pathology have not been determined. Based on the available AIDG23S mice, we successfully established an AIDG23S MRL/lpr mouse model, in which SHM is specifically abolished, although CSR is largely unaffected. We found that the abrogation of SHM effectively alleviated SLE-associated histopathological alterations, such as expansion of the mesangial matrix and thickening of the basement membrane of Bowman's capsule as well as infiltration of inflammatory cells. Compared with SLE mice, AIDG23S MRL/lpr mice exhibited decreased proteinuria, blood urea nitrogen, and creatinine, indicating that the loss of SHM contributed to the recovery of renal functions. As a consequence, the life span of those SHM-deficient MRL/lpr mice was extended. Together, we provide direct evidence pinpointing a vital role of SHM in the control of SLE development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app