CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics.

OBJECTIVES: Congenital nasal pyriform aperture stenosis (CNPAS) is a rare cause of airway obstruction in the neonate. Computational airway modeling has not been done in neonates and young infants to understand the impact of stenosis on functional nasal airflow. In this study, we 1) applied computational fluid dynamics (CFD) model to the airway of a neonate with CNPAS and 2) compare airflow dynamics of a normal and CNPAS airway.

METHODS: Three-dimensional models of the nasal airway of a normal neonate and a neonate with CNPAS were created using computed tomography scans of the facial bones. Measured anatomic parameters included volume, surface area, and cross-sectional area. CFD simulation was then performed. Simulated flow parameters included pressure, average velocity, and resistance.

RESULTS: The neonate with CNPAS had a lesser volume (2.74 cm3 vs. 4.50 cm3 ) and surface area (18.8 cm2 vs. 45.5 cm2 ) than the normal airway. The CNPAS airway had a lesser bilateral cross-sectional area and average cross-sectional velocity throughout the length of the model. While there is a large pressure drop in the normal airway immediately after the entry point, the pressure drop in the CNPAS airway occurs more posteriorly. The total nasal resistance was approximately eight-fold greater in the CNPAS airway than the normal.

CONCLUSIONS: CFD analysis can be performed on airways of neonates with nasal obstruction, such as in CNPAS. A CFD model may help characterize severity of airway obstruction as it can predict the three-dimensional pattern of airflow. Determining the role of CFD in clinical management of CNPAS requires further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app