Add like
Add dislike
Add to saved papers

Indoor-outdoor association of particulate matter and bounded elemental composition within coarse, quasi-accumulation and quasi-ultrafine ranges in residential areas of northern India.

Attempts have been made to comprehend size distribution pattern of Particulate Matter (PM) and associated elemental concentration within coarse (2.5-10μm), quasi-accumulation (q-Acc) (0.25-2.5μm) and quasi-ultrafine (q-UF) (<0.25μm) ranges at indoors and outdoors of residential homes of Agra. Overall, the average mass concentrations of PM10 and PM2.5 in indoors were found to be 263.24±59.24 and 212.01±38.06μgm-3 while in outdoors the concentrations accounted to 194.28±15.25 and 152.88±16.31μgm-3 respectively; exceeding WHO standards. In view of geographical variation, significantly higher (t=2.461; P=0.044) PM mass was found in outdoor samples of roadside location when compared to homes located far away from busy traffic; whereas indoor concentration exhibited non-significant relationship (t=1.887; P=0.095) between the two categorized homes. Findings of size partitioning trend through deployment of Sioutas Cascade Impactor evidenced presence of high proportion of PM and elemental concentrations within q-Acc and q-UF modes with their distribution pattern and probable emission sources conferred upon. Absence of modal peak in coarse range indicated predominance of anthropogenic emissions with presumed wash-out of coarse particles during frequent precipitation coincidental with sampling event. Seeming modal shifts for some elements (K, Cd, Zn) from q-Acc to q-UF were perceived during infiltration process. Presence of high traffic emission in homes near busy road stemmed the shifting of particles (Cu, K, Co, Zn) towards finer size (preferably q-UF mode) thus exposing residents to adverse health effects through their penetration (Finf=0.14) into indoor environment. Flat slopes (0.11) and poor correlation (8.4%) for metals in coarser range obtained through regression model hypothesized their high deposition velocities and low penetration efficiency. Our findings suggest enhanced resident exposure to fine particles (81%) especially q-UF range (37%) through indoor and outdoor (through infiltration) sources along with complexity of size distribution of airborne particles that prerequisites surplus consideration to achieve a healthier environment within residential area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app