Add like
Add dislike
Add to saved papers

Frequency-dependent shear properties of annulus fibrosus and nucleus pulposus by magnetic resonance elastography.

Aging and degeneration are associated with changes in mechanical properties in the intervertebral disc, generating interest in the establishment of mechanical properties as early biomarkers for the degenerative cascade. Magnetic resonance elastography (MRE) of the intervertebral disc is usually limited to the nucleus pulposus, as the annulus fibrosus is stiffer and less hydrated. The objective of this work was to adapt high-frequency needle MRE to the characterization of the shear modulus of both the nucleus pulposus and annulus fibrosus. Bovine intervertebral discs were removed from fresh oxtails and characterized by needle MRE. The needle was inserted in the center of the disc and vibrations were generated by an amplified piezoelectric actuator. MRE acquisitions were performed on a 4.7-T small-animal MR scanner using a spin echo sequence with sinusoidal motion encoding gradients. Acquisitions were repeated over a frequency range of 1000-1800 Hz. The local frequency estimation inversion algorithm was used to compute the shear modulus. Stiffness maps allowed the visualization of the soft nucleus pulposus surrounded by the stiffer annulus fibrosus surrounded by the homogeneous gel. A significant difference in shear modulus between the nucleus pulposus and annulus fibrosus, and an increase in the shear modulus with excitation frequency, were observed, in agreement with the literature. This study demonstrates that global characterization of both the nucleus pulposus and annulus fibrosus of the intervertebral disc is possible with needle MRE using a preclinical magnetic resonance imaging (MRI) scanner. MRE can be a powerful method for the mapping of the complex properties of the intervertebral disc. The developed method could be adapted for in situ use by preserving adjacent vertebrae and puncturing the side of the intervertebral disc, thereby allowing an assessment of the contribution of osmotic pressure to the mechanical behavior of the intervertebral disc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app