Add like
Add dislike
Add to saved papers

Spatially Uniform Tumor Treatment and Drug Penetration by Regulating Ultrasound with Microbubbles.

Tumor microenvironment has different morphologies of vessels in the core and rim regions, which influences the efficacy of tumor therapy. Our study proposed to improve the spatial uniformity of the antivascular effect and drug penetration within the tumor core and rim in combination therapies by regulating ultrasound-stimulated microbubble destruction (USMD). Focused ultrasound at 2 MHz and lipid-shell microbubbles (1.12 ± 0.08 μm, mean ± standard deviation) were used to perform USMD. The efficiency of the antivascular effect was evaluated by intravital imaging to determine the optimal USMD parameters. Tumor perfusion and histological alterations in the tumor core and rim were used to analyze the spatial uniformity of the antivascular effect and liposomal-doxorubicin (5 mg/kg) penetration in the combination therapy. Tumor vessels of specific sizes were disrupted by regulating USMD: vessels with sizes of 11 ± 3, 14 ± 5, 19 ± 7, and 23 ± 10 μm were disrupted by stimulation at acoustic pressures of 3, 5, 7, and 9 MPa, respectively (each p < 0.05). The effective treatment time of USMD (at 2 × 107 microbubbles/mouse, 7 MPa, and three cycles) was 60-120 min, which resulted in the disruption of 21-44% of vessels smaller than 50 μm. The reductions in perfusion and vascular density after combination therapy did not differ significantly between the tumor core and rim. This study found that regulating USMD can result in homogeneous antivascular effects and drug penetration within tumors and thereby improve the efficacy of combination therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app