Add like
Add dislike
Add to saved papers

Interface Properties of Nanosilica-Modified Waterborne Epoxy Cement Repairing System.

Nowadays, numerous concrete structures are urgently needed to be repaired and strengthened for the severe safety and durability of constructions. In this study, a novel type of silane-based interfacial coupling agent (ICA) is prepared by modifying the silane coupling agent (SCA) with a hydrothermally treated nanosilica (HTNS). The effect of ICA on the cement hydration and crystalline form as well as the hydrolysis/condensation extent of siloxanes is illustrated. The bonding strength, morphology and propagation of the interface cracks, and the interfacial ductile fracture characterization are investigated. Besides, the coupling mechanism of ICA in the repaired interface is explored. The results show that HTNS effectively catalyzes SCA hydrolysis and condensation to form Si-O-Si bonding in a neutral environment. The application of ICA on an old cementitious matrix not only significantly improves the bonding strength and toughness of the repair interface, but also mitigates the negative effect of dealcoholization of siloxanes on the hydration of the cement. The repaired interface simultaneously exhibits stiffness, toughness, and multicracking features in the process of straining. On a microlevel, ICA consumes portlandite during cement hydration and finely crystallizes to form a layered plug structure at the repaired interface . With the continuous dissolution of portlandite, the nanosilica in ICA forms a fibrous, stable product with ions and enhances the interfacial pore plug effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app