Journal Article
Review
Add like
Add dislike
Add to saved papers

How is the human umbilical artery regulated?

The purpose of this review is to present an update of the main mechanisms involved in the physiological regulation of contraction and relaxation of the human umbilical artery (HUA) smooth muscle cells. A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the regulation of the HUA are presented in this article. The vascular smooth muscle is a highly specialized structure, whose main function is to regulate the vascular tonus. This is controlled by a balance between the cellular signaling pathways that mediate contraction and relaxation. The cells responsible for the contractile property of this muscle are the smooth muscle cells (SMC), and an excellent source of these cells is the HUA, involved in fetoplacental circulation. Since the umbilical blood vessels are not innervated, the HUA tonus is modulated by vasoactive substances that regulate the contractile process. The main vasoactive substances that induce contraction are serotonin, histamine, thromboxane, bradykinin, endothelin 1 and prostaglandin F2α, that are linked to the activation of proteins Gq and Gi/0 . On the other hand, the main vasorelaxation mechanisms are the activation of adenyl and guanil cyclases, potassium channels and the inhibition of calcium channels. The SMC from the HUA allow the study of different cellular mechanisms and their functions. Therefore, these cells are an important tool to study the mechanisms regulating the contractility of this artery, allowing to detect potential therapeutic targets to treat HUA disorders (gestational hypertension and pre-eclampsia).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app