Add like
Add dislike
Add to saved papers

Inchworm bipedal nanowalker.

Nanoscale 2018 May 18
Nanowalkers take either inchworm (IW) or hand-over-hand (HOH) gait. The IW nanowalkers are advantageous over HOH ones in force generation, processivity and high-density integration, though both gaits occur in intracellular nanowalkers from biology. Artificial IW nanowalkers have been realized or proposed, but all rely on different 'head' and 'tail' to gain an adventitious direction. Here we report an inherently unidirectional IW nanowalker that is a biped with two identical legs (i.e., indistinguishable 'head' and 'tail'). This walker is made of DNA, and driven by a light-powered G-quadruplex engine. The directional inchworm motion is confirmed by operating the walker on a DNA duplex track that is designed to show a distinctive fluorescence pattern for IW walkers as compared to HOH ones. Interestingly, this walker exhibits stride-controlled IW-to-HOH gait switch and direction reversal when the track's periodic binding sites have wider and wider separation. The results altogether present an integrated mechanism for implementing nanowalkers of different gaits and directions on molecular tracks, optical potentials or even solid-state surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app