Add like
Add dislike
Add to saved papers

Population Pharmacokinetic Analysis of Alirocumab in Healthy Volunteers or Hypercholesterolemic Subjects Using a Michaelis-Menten Approximation of a Target-Mediated Drug Disposition Model-Support for a Biologics License Application Submission: Part I.

BACKGROUND: Alirocumab, a human monoclonal antibody, inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) to significantly reduce low-density lipoprotein cholesterol levels; pharmacokinetics (PK) are governed by non-linear, target-mediated drug disposition (TMDD).

OBJECTIVES: We aimed to develop and qualify a population PK (PopPK) model to characterize the PK profile of alirocumab, evaluate the impact of covariates on alirocumab PK and on individual patient exposures, and estimate individual predicted concentrations for a subsequent PK/pharmacodynamic (PD) analysis.

METHODS: Data from 13 phase I-III trials of 2799 healthy volunteers or patients with hypercholesterolemia treated with intravenous or subcutaneous alirocumab (13,717 alirocumab concentrations) were included; a Michaelis-Menten approximation of the TMDD model was used to estimate PK parameters and exposures. The final model comprised two compartments with first-order absorption. Elimination from the central compartment was described by linear (CLL) and non-linear Michaelis-Menten clearance (Vm and Km). The model was validated using visual predictive check and bootstrap methods. Patient exposures to alirocumab were computed using individual PK parameters.

RESULTS: The PopPK model was well-qualified, with the majority of observed alirocumab concentrations in the 2.5th-97.5th predicted percentiles. Covariates responsible for interindividual variability were identified. Body weight and concomitant statin administration impacted CLL, whereas time-varying free PCSK9 concentrations and age affected Km and peripheral distribution volume (V3), respectively. No covariates were clinically meaningful, therefore no dose adjustments were needed.

CONCLUSIONS: The model explained the between-subject variability, quantified the impact of covariates, and, finally, predicted alirocumab concentrations (subsequently used in a PopPK/PD model, see Part II) and individual exposures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app