Add like
Add dislike
Add to saved papers

IL-3 but not monomeric IgE regulates FcεRI levels and cell survival in primary human basophils.

Binding of allergen-specific IgE to its primary receptor FcεRI on basophils and mast cells represents a central event in the development of allergic diseases. The high-affinity interaction between IgE and FcεRI results in permanent sensitization of these allergic effector cells and critically regulates their release of pro-inflammatory mediators upon IgE cross-linking by allergens. In addition, binding of monomeric IgE has been reported to actively regulate FcεRI surface levels and promote survival of mast cells in the absence of allergen through the induction of autocrine cytokine secretion including interleukin-3 (IL-3). As basophils and mast cells share many biological commonalities we sought to assess the role of monomeric IgE binding and IL-3 signaling in FcεRI regulation and cell survival of primary human basophils. FcεRI cell surface levels and survival of isolated blood basophils were assessed upon addition of monomeric IgE or physiologic removal of endogenous cell-bound IgE with a disruptive IgE inhibitor by flow cytometry. We further determined basophil cell numbers in both low and high serum IgE blood donors and mice that are either sufficient or deficient for FcεRI. Ultimately, we investigated the effect of IL-3 on basophil surface FcεRI levels by protein and gene expression analysis. Surface levels of FcεRI were passively stabilized but not actively upregulated in the presence of monomeric IgE. In contrast to previous observations with mast cells, monomeric IgE binding did not enhance basophil survival. Interestingly, we found that IL-3 transcriptionally regulates surface levels of FcεRI in human primary basophils. Our data suggest that IL-3 but not monomeric IgE regulates FcεRI expression and cell survival in primary human basophils. Thus, blocking of IL-3 signaling in allergic effector cells might represent an interesting approach to diminish surface FcεRI levels and to prevent prolonged cell survival in allergic inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app